Some generalizations of the criss-cross method for quadratic programming
نویسندگان
چکیده
Three generalizations of the criss-cross method for quadratic programming are presented here. Tucker's, Cottle's and Dantzig's principal pivoting methods are specialized as diagonal and exchange pivots for the linear complementarity problem obtained from a convex quadratic program. A nite criss-cross method, based on least{index resolution, is constructed for solving the LCP. In proving niteness, orthogonality properties of pivot tableaus and positive semide niteness of quadratic matrices are used. In the last section some special cases and two further variants of the quadratic criss-cross method are discussed. If the matrix of the LCP has full rank, then a surprisingly simple algorithm follows, which coincides with Murty's `Bard type schema' in the P matrix case. Abbreviated title: Criss-cross methods for quadratic programming.
منابع مشابه
The finite criss-cross method for hyperbolic programming
In this paper the nite criss-cross method is generalized to solve hyperbolic programming problems. Just as in the case of linear or quadratic programming the criss-cross method can be initialized with any, not necessarily feasible basic solution. Finiteness of the procedure is proved under the usual mild assumptions. Some small numerical examples illustrate the main features of the algorithm.
متن کاملOn Anti-cycling Pivoting Rules for the Simplex Method, Operations the Equivalence of Dantzig's Self-dual Parametric Algorithm for Linear Programs to Lemke's Algorithm for Linear Complementarity Problems Applied to Linear Programming, Technical Report
Rotterdam 9707/A (1997). 82] S. Zionts, The criss-cross method for solving linear programming problems, English title: A new, nite criss-cross method for solving linear programming problems.) 64] T. Terlaky, A convergent criss-cross method, Math. Oper. und Stat. ser. Some generalizations of the criss-cross method for the linear complementarity problem of oriented matroids, Combinatorica 9 23] G...
متن کاملCriss-cross methods: A fresh view on pivot algorithms
This paper surveys the origins and implications of ( nite) criss-cross methods in linear programming and related problems. Most pivot algorithms, like Dantzig's celebrated Simplex method, need a feasible basis to start with; when the basis is changed, feasibility is preserved until optimality or unboundedness is detected. To obtain a feasible basis a so-called rst phase problem must be solved. ...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملClose interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program
The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990